首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   55篇
  国内免费   110篇
航空   267篇
航天技术   42篇
综合类   71篇
航天   71篇
  2024年   1篇
  2023年   5篇
  2022年   9篇
  2021年   11篇
  2020年   13篇
  2019年   16篇
  2018年   19篇
  2017年   18篇
  2016年   17篇
  2015年   21篇
  2014年   19篇
  2013年   18篇
  2012年   22篇
  2011年   18篇
  2010年   17篇
  2009年   22篇
  2008年   9篇
  2007年   22篇
  2006年   16篇
  2005年   16篇
  2004年   14篇
  2003年   9篇
  2002年   12篇
  2001年   10篇
  2000年   10篇
  1999年   7篇
  1998年   10篇
  1997年   12篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   7篇
  1992年   9篇
  1991年   11篇
  1990年   8篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有451条查询结果,搜索用时 202 毫秒
391.
利用二级轻气炮发射铝球弹丸,在真空环境下高速撞击双层铝板和三层铝板结构,研究撞击速度、板间距、铝板厚度对结构撞击损伤的影响。然后分析三层铝板结构的撞击极限速度,并与相同面密度的双层铝板结构的试验结果进行比较。结果表明,当面密度相同时,三层铝板结构比双层铝板结构具有更强的高速撞击防护能力,增加首层铝板厚度有助于提高三层铝板结构高速撞击防护性能,当第二层铝板位于首层铝板与舱壁中间位置时,三层铝板结构的高速撞击防护性能趋于最佳。  相似文献   
392.
提出了基于非线性压缩变换的纤维增强复合薄板非线性阻尼的时域测试方法。基于非线性压缩变换构造了理论分析信号,并推导获得了复合结构系统非线性阻尼的表达式,明确了从时域测试角度获取非线性阻尼参数的理论原理。编写了Matlab算法,并用数值算例证明了该算法的正确性。总结并概括出一套合理、规范的测试流程,并对TC500碳纤维/树脂基复合薄板进行了实际测试。实践证明,利用所提出的方法可以有效获得复合薄板在不同衰减时刻对应的阻尼参数,该方法可以用来定量评价不同振动幅值及频率下复合结构的非线性阻尼特性。   相似文献   
393.
一种高超声速进气道加速自起动的实验方法   总被引:1,自引:1,他引:0  
为了探寻在地面常规暂冲式风洞中开展高超声速进气道加速自起动实验的可行性,提出了基于前遮板的高超声速进气道连续变攻角加速自起动实验方法。该实验方法通过将安装有前遮板的进气道模型在风洞实验段整体从极限正攻角旋转至极限负攻角,前遮板会产生激波对远前方气流减速,或产生膨胀波对远前方气流加速,而位于前遮板下游的进气道即可获得加速自起动过程所需连续加速的来流条件。通过数值仿真对所提出的加速自起动实验方法进行了验证。研究结果显示:以2(°)/s的角速度整体旋转基于前遮板的高超声速进气道模型,其起动马赫数与高超声速进气道自身加速自起动马赫数相差在1%以内,表明基于前遮板的高超声速进气道连续变攻角加速自起动实验方法能够被用于在常规暂冲式风洞中开展高超声速进气道加速自起动实验研究。   相似文献   
394.
前缘直板扰流对高速空腔的降噪效果分析   总被引:1,自引:0,他引:1  
周方奇  杨党国  王显圣  刘俊  施傲 《航空学报》2018,39(4):121812-121812
高速空腔复杂流动和噪声一直是航空航天领域所关注的问题,高强度的空腔噪声不仅影响腔内仪器设备的正常运行,还会对其自身的结构产生疲劳破坏,进而影响飞行器的飞行安全和品质,因此空腔噪声的抑制研究和典型控制方法的降噪效果分析对提高飞行器结构安全性意义重大。本文通过开展高速风洞试验研究跨超声速(Ma=0.9和Ma=1.5)来流条件下前缘直板装置对空腔(长深比为6)流动和噪声的控制机理,通过对比多种前缘直板控制条件下的腔内噪声声压级(SPL)分布,确定直板控制参数的优化选择方法及最优参数;利用静态/动态压力传感器和油流试验采集腔内静压、脉动压力和壁面流谱,着重分析前缘直板对腔内流动结构、声压级和声压频谱的影响规律。结果表明:前缘直板可以大幅度抬高剪切层的位置,使得后缘的撞击区域后移,从而削弱流体进入腔内的流量和强度;可以有效降低腔内静压、减小回流强度和范围,对腔内声压级和峰值噪声也具有显著的抑制效果,Ma=0.9和Ma=1.5时后缘声压级降低幅值可达11.13 dB和8.0 dB。前缘直板流动控制为高速来流条件下空腔噪声的抑制提供了一种新的方法,可有效应用于飞行器上空腔结构的流动/噪声控制,具有重要的工程应用价值和前景。  相似文献   
395.
江中正  赵文文  袁震宇  陈伟芳 《航空学报》2018,39(10):122057-122057
非线性耦合本构关系(NCCR)模型是在Eu的广义流体动力学方程(GHE)基础上,通过绝热假设、Eu封闭和Myong简化推导出的关于非守恒量(黏性应力与热流)的非线性代数方程,有效拓展了线性的纳维-斯托克斯-傅里叶(NSF)本构模型在非平衡流动中的模拟能力,为快速准确模拟连续与稀薄耦合流动问题提供了强有力的理论工具。针对该模型开展滑移边界条件研究,结合努森层内物理量非线性分布的特点,提出一套在物面处与模型精度相一致的非线性修正滑移边界条件。在有限体积框架下,采用AUSMPW+格式和LU-SGS方法以及NCCR的完整耦合求解算法,对不同稀薄程度的高超声速单原子氩气圆柱绕流和平板绕流问题进行数值模拟。研究结果表明,基于NCCR模型的修正边界条件准确刻画出物面努森层内流动的非线性特点,有效提高了固壁滑移边界的精度。采用非线性修正边界的NCCR模型准确预测了连续流、滑移流和过渡流域的物面压力、摩阻与热流系数。  相似文献   
396.
将GAO-YONG湍流模型应用于湍流传热的研究,分别计算了平板剪切湍流和二维平面冲击射流的湍流传热问题.边界层剪切湍流流动与换热的计算表明:与传统的湍流模型不同,GAO-YONG湍流模型不需要对近壁区域做任何特殊处理(比如壁面函数、低Reynolds数修正等)即可模拟出从壁面到主流区的全部流动与传热情况;另外,对于冲击射流Nusselt数的模拟也得到了与实验符合较好的计算结果,准确地捕捉到了2种冲击高度下流场换热的不同特征,表明了GAO-YONG湍流模型能够较高精度地计算湍流换热.   相似文献   
397.
多孔扰流板对半封闭窄箱梁涡振的减振效果   总被引:2,自引:0,他引:2  
大跨度桥梁涡激共振是影响桥梁运营阶段行车舒适性和桥梁构件疲劳寿命的重要因素。以某半封闭钢箱梁斜拉桥为工程背景,通过节段模型风洞试验研究了在宽高比约为8.1的半封闭窄箱梁底板外缘安装多孔扰流板气动措施的涡振减振效果。结果表明:对于这类半封闭窄箱梁,在上游侧安装多孔板的减振效果略好于上下游两侧同时安装多孔板的减振效果,只在下游侧安装多孔板的减振效果要明显不如前二者;此外,多孔板悬挑宽度对其涡振减振效果也有较大影响,一般来说多孔板悬挑宽度越大,减振效果越好,尤其是对于只在下游侧安装多孔板的情况,多孔板悬出宽度对减振效果的影响更明显。  相似文献   
398.
建立平箔片的二维厚板有限元模型,运用有限单元法和有限差分法耦合求解Reynolds方程和气膜厚度方程,研究了在两个工作转速下气体波箔片轴承在中截面和边缘处最小气膜厚度随轴承承载力变化规律.通过数值仿真对该模型、一维梁模型、二维薄壳模型和文献实验数据进行对比分析,结果表明:在轴承中截面处,3个模型的最小气膜厚度仿真结果都与实验结果符合得很好,但在轴承边缘处,由于二维厚板模型考虑了平箔片的剪切效应,因此其最小气膜厚度比二维薄壳模型的结果更接近实验值,而一维梁模型只考虑轴承圆周方向,因此不能体现气膜厚度沿轴承长度方向的变化规律.通过研究,为分析箔片轴承动力学特性奠定了理论基础.   相似文献   
399.
前板结构对低滞后刷式密封性能影响分析   总被引:3,自引:2,他引:1  
针对不同前板结构的低滞后刷式密封,采用多孔介质模型,进行流场计算,对计算得到的上游刷丝压力、速度分布、刷丝上游靠近跑道区域的湍流动能以及刷式密封泄漏量进行分析,讨论对于低滞后刷式密封的性能的影响.分析表明:前板结构对上游刷丝压力、轴向速度分布以及刷式密封泄漏量无明显影响,对上游刷丝径向速度分布影响较大;无前板及过长前板结构,刷封上游靠近跑道区域湍流动能较大,前板开孔可降低刷丝上游靠近跑道区域的湍流动能,减弱刷丝扰动的趋势.   相似文献   
400.
针对不同前板结构的低滞后刷式密封,采用多孔介质模型,进行流场计算,对计算得到的上游刷丝压力、速度分布、刷丝上游靠近跑道区域的湍流动能以及刷式密封泄漏量进行分析,讨论对于低滞后刷式密封的性能的影响.分析表明:前板结构对上游刷丝压力、轴向速度分布以及刷式密封泄漏量无明显影响,对上游刷丝径向速度分布影响较大;无前板及过长前板结构,刷封上游靠近跑道区域湍流动能较大,前板开孔可降低刷丝上游靠近跑道区域的湍流动能,减弱刷丝扰动的趋势.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号